skip to main content


Search for: All records

Creators/Authors contains: "Roy Burman, Shourya S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Binding-induced conformational changes challenge current computational docking algorithms by exponentially increasing the conformational space to be explored. To restrict this search to relevant space, some computational docking algorithms exploit the inherent flexibility of the protein monomers to simulate conformational selection from pre-generated ensembles. As the ensemble size expands with increased flexibility, these methods struggle with efficiency and high false positive rates.

    Results

    Here, we develop and benchmark RosettaDock 4.0, which efficiently samples large conformational ensembles of flexible proteins and docks them using a novel, six-dimensional, coarse-grained score function. A strong discriminative ability allows an eight-fold higher enrichment of near-native candidate structures in the coarse-grained phase compared to RosettaDock 3.2. It adaptively samples 100 conformations each of the ligand and the receptor backbone while increasing computational time by only 20–80%. In local docking of a benchmark set of 88 proteins of varying degrees of flexibility, the expected success rate (defined as cases with ≥50% chance of achieving 3 near-native structures in the 5 top-ranked ones) for blind predictions after resampling is 77% for rigid complexes, 49% for moderately flexible complexes and 31% for highly flexible complexes. These success rates on flexible complexes are a substantial step forward from all existing methods. Additionally, for highly flexible proteins, we demonstrate that when a suitable conformer generation method exists, the method successfully docks the complex.

    Availability and implementation

    As a part of the Rosetta software suite, RosettaDock 4.0 is available at https://www.rosettacommons.org to all non-commercial users for free and to commercial users for a fee.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours. 
    more » « less
  3. Abstract

    Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near‐native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse‐grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next‐generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced‐fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide‐protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide‐protein interactions.

     
    more » « less